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Abstract
Fault recovery is a key issue in modern data centers. In a fat
tree topology, a single link failure can disconnect a set of end
hosts from the rest of the network until updated routing in-
formation propagates to every network element in the topol-
ogy. �e time for re-convergence can be substantial, leaving
hosts disconnected for long periods of time and signi�cantly
reducing the overall availability of the data center. Moreover,
the message overhead of sending updated routing informa-
tion to the entire topology may be unacceptable at scale. We
present techniques tomodify hierarchical data center topolo-
gies to enable switches to react to failures locally, thus reduc-
ing both the convergence time and the control overhead of
failure recovery. We �nd that for a given network size, de-
creasing the convergence time for a topology results in a de-
crease to the topology’s scalability (e.g. the number of hosts
supported). On the other hand, for a �xed host count, a re-
duction in convergence time comes at the cost of additional
network elements and links. We explore the tradeo�s be-
tween fault tolerance, scalability and network size, and we
propose a range ofmodi�edmulti-rooted tree topologies that
provide signi�cantly reduced convergence time while retain-
ing much of the traditionally-de�ned fat tree’s scalability.

1. INTRODUCTION
Moderndata centers o�enoperate over hierarchically struc-

turednetwork fabrics. In fact, one of themost common topolo-
gies for interconnects of network elements —switches— in
the data center is a fat tree, or Clos network [1, 5, 19, 24]. �is
topology’s popularity is in part due to its support for full bi-
section bandwidth. In our experience, and as shown in recent
studies [9], a key di�culty in the data center is handling faults
in these hierarchical network fabrics.

Despite the high path multiplicity between end hosts in a
traditionally de�ned fat tree, a single link failure can tem-
porarily cause the loss of all packets destined to a particu-
lar set of end hosts, e�ectively disconnecting a portion of the
network. For instance, a link failure at the top level of a 3-
level, 64-port fat tree tree can disconnect as many as 1,024, or
1.5%, of the topology’s hosts. �is can drastically a�ect stor-
age applications that replicate (or distribute) data across the
cluster; there is a signi�cant probability that the failure of an

arbitrary 1.5% of hosts could cause the loss of all replicas (or
pieces) of a subset of data items, and the storage overhead
required to avoid this loss could be expensive. Moreover, re-
cent studies [9] show that one third of data center link failures
disrupt ongoing tra�c, causing the loss of small but critical
packets such as acknowledgments and keep-alives. It is cru-
cial then, that re-convergence periods be as short as possible.

However, the time required for updating network elements
to work around failures and to use alternate paths can be sub-
stantial. For instance, the time for global re-convergence of
the broadcast-based routing protocols (e.g. OSPF and IS-
IS) used in today’s data centers [4, 23] can be tens of sec-
onds [20, 21]. As each switch receives an update, its CPU
processes the information, calculates a new topology and for-
warding table, and computes corresponding updates to send
to all of its neighbors. Embedded CPUs on switches are gen-
erally under-powered and slow compared to a switch’s data
plane [21, 22] and in practice, settings such as protocol timers
can further compound these delays [17]. �e processing time
at each switch along the path from a failure to the farthest
switches adds up quickly. Packets continue to be dropped
during this re-convergence period, crippling applications un-
til recovery completes. Moreover, at data center scale, the
control overhead required to broadcast updated routing in-
formation to all nodes in the topology can be signi�cant.

Long convergence times are unacceptable in the data cen-
ter, where the highest levels of availability are required. For
instance, an expectation of 5 nines (99.999%) availability cor-
responds to about 5 minutes of downtime per year, or 30 fail-
ures, each with a 10 second re-convergence time. A fat tree
that supports tens of thousands of hosts can have hundreds of
thousands of links1 and recent studies show that at best, 80%
of these links have 4 nines availability [9]. In an environment
in which link failures occur quite regularly, restricting the an-
nual number of failures to 30 is essentially impossible.

Our goal is to eliminate excessive periods of host discon-
nection and packet loss in the data center. Since it is un-
realistic to limit the number of failures su�ciently to meet
availability requirements, we consider the problem of dras-
tically reducing the re-convergence time for each individual
failure, by modifying fat tree topologies to enable local fail-

1Even a relatively small 64-port, 3-level fat tree has 196,608 links.
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ure reactions. �ese modi�cations introduce redundant links
(and thus a denser interconnect) at one or more levels of the
tree, in turn reducing the number of hops through which
routing updates propagate. Additionally, instead of requiring
global OSPF convergence on a link failure, we send simple
failure (and recovery) noti�cation messages to a small subset
of switches located near to the failure. Together, these tech-
niques substantially decrease re-convergence time (by send-
ing small updates over fewer hops) and control overhead (by
involving considerably fewer nodes and eliminating reliance
on broadcast). We name ourmodi�ed fat treesAspen trees, in
reference to a species of tree that survives for years a�er the
failure of redundant roots.

�e idea of incorporating redundant links for added fault
tolerance in a hierarchical topology is not new. In fact, the
topology used in VL2 [11] is an instance of an Aspen tree.
However, to the best of our knowledge, there has not yet been
a precise analysis of the tradeo�s between fault tolerance, scal-
ability, andnetwork size across the range ofmulti-rooted trees.
Such an analysis would help data center operators to build
topologies that meet customer SLAs while satisfying budget
constraints. As [9] shows, this is missing in many of today’s
data centers, where even with added network redundancy,
failure reaction techniques succeed for only 40% of failures.

We explore the bene�ts and tradeo�s of building a highly
available large-scale network that can react to failures locally.
We �rst give an algorithm to determine the set of Aspen trees
that can be created, given constraints such as the number of
available switches or the requirements for host support (§ 3).
Next, to precisely specify the fault tolerance properties of As-
pen trees, we introduce a Fault Tolerance Vector (FTV). An
FTV quanti�es failure reactivity by indicating the quality and
locations of added fault tolerance throughout a tree (§ 4).

Engineering topologies to support local failure reactions
comes with a cost, namely, the tree supports fewer hosts and
accommodates less hierarchical aggregation. We formalize a
tree’s scalability properties in terms of its FTV, and �nd that
the introduction of redundant links at a single level of the tree
results in a multiplicative decrease to the maximum number
of hosts that can be supported by the tree. �at is, we reduce
the total number of hosts in the tree by 50% for each level
at which we increase from 0 to 1 the number of link failures
tolerable without host disconnection. Interestingly, improv-
ing fault tolerance by increasing the number of switches and
links in a topology (while keeping host count �xed) has the
potential to domore harm than good by introducing substan-
tiallymore points of failure. However, we show (§ 7.2 )that the
decreased convergence time enabled by local reaction more
than makes up for the added opportunity for link failures.

In § 5, we o�er a failure reaction protocol that leverages
an Aspen tree’s redundant links; this lends intuition to our
discussion (§ 6) of the options for interconnection patterns
among Aspen tree switches. Finally, in § 8 we provide a thor-
ough analysis of the tradeo�s between fault tolerance, scala-
bility, and network size for a variety of trees.

2. MOTIVATION AND CONTEXT
In a traditional fat tree, a single link failure can be dev-

astating, causing all packets destined to a set of hosts to be
droppedwhile updated routing state propagates to every node
in the topology. For instance, consider a packet traveling from
host x to host y in the 4-level, 4-port fat tree of Figure 1 and
suppose that the link between switches f and g fails shortly
before the packet reaches f . f no longer has a downward path
to y and drops the packet. In fact, with the failure of link f−g,
the packet would have to travel through h to reach its desti-
nation. For this to happen, x’s ingress switch a would need to
know about the failure and to select a next hop accordingly.

e	  

d	  

c	  

g	   i	  

f	   h	  

a	  

b	  

y	   x	  

L1	  

L2	  

L4	  

L3	  

Figure 1: Packet Travel in a 4-Level, 4-Port Fat Tree

�is means that in the worst case, information about a sin-
gle link failure needs to propagate to all of the lowest level
switches of the tree, passing through every single switch in
the process.�e time for this information to propagate grows
with the depth of the tree, and the time for recalculating rout-
ing state and updating forwarding tables can be substantial.
Isolated link failures are both common and impactful in the
data center [9], so timely reaction is critical.

�ere are alternative routing techniques that avoid packet
loss. For instance, bounce routing techniques work around
failures by temporarily sending packets away from a desti-
nation. In Figure 1, a bounce routing-based protocol might
send the packet from f to i. Switch i can then bounce the
packet back up to h, which still has a path to g. However,
bounce routing based on local information introduces addi-
tional so�ware complexity to support the calculation and ac-
tivation of extra, non-shortest path entries and to avoid for-
warding loops. Additionally, combining bounce routing with
�ow control protocols can lead to deadlock [7, 14].

It is also possible to construct a protocol that sends a packet
back along its path to the nearest switch that can re-route
around a failed link, similar to the technique employed by
data-driven connectivity (DDC) [21]. In DDC, a packet sent
along the path in Figure 1 would need to travel from f back
up to the top of the tree and then down three levels to a be-
fore it could be re-routed towards h. DDC provides the ‘ideal
connectivity” property, in which packets are not dropped un-
less the destination is physically unreachable. However, this
comes at the cost of (temporarily) introducing long paths. We
more closely compare Aspen trees to DDC in § 9.
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Our approach is to o�er an alternative to bouncing pack-
ets in either direction. We modify the fat tree by introducing
redundancy at one ormore levels; this allows switches to han-
dle a failure locally without requiring global re-convergence
of topology information, but at a cost in the topology’s scale.
We coin the resulting modi�ed fat trees Aspen trees.

Before describing Aspen trees in detail, we �rst de�ne sev-
eral key terms and conventions. An n-level, k-port Aspen
tree consists of switches at levels L1 through Ln (as marked
in Figure 1) and hosts at L0. Each switch has k ports, half of
which connect to switches in the level above and half of which
connect to switches below. Switches at Ln have k downward-
facing ports. We group switches at each level L i into pods. A
pod includes the maximal set of L i switches that all connect
to the same set of L i−1 pods below, and an L1 pod consists of a
single L1 switch. An example L3 pod is circled in Figure 1. In
a traditional fat tree, there are S switches at levels L1 through
Ln−1 and S

2 switches at Ln ; we retain this property in Aspen
trees. For now, we do not consider multi-homed hosts, given
the associated addressing complications.

3. DESIGNING ASPEN TREES
In this section, we describe ourmethod for generating trees

with varying fault tolerance properties. Intuitively, our ap-
proach is to begin with a traditional fat tree, and then to dis-
connect links at a given level and “repurpose” them as redun-
dant links for added fault tolerance at the same level. By in-
creasing the number of links between one subset of switches
at adjacent levels, we necessarily disconnect another subset of
switches at those levels. �ese newly disconnected switches
and their descendants are deleted, ultimately resulting in a
decrease in the number of hosts supported by the topology.

Figure 2 depicts this process pictorially. In Figure 2(a),
L3 switch s connects to four L2 pods: q={q1 ,q2}, r={r1 ,r2},
t={t1 ,t2}, and v={v1 ,v2}. To increase fault tolerance between
L3 and L2, we decide to provide redundant connections from
s to pods q and r. We �rst need to free some upward facing
ports from q and r, and we chose the uplinks from q2 and r2
as candidates for deletion because they connect to L3 switches
other than s.

Next, we select L3 downlinks to repurpose. Since we wish
to increase fault tolerance between s and pods q and r, we
must do so at the expense of pods t and v, by removing the

links shown with dotted lines in Figure 2(b). For symmetry,
we include switch w with s. �e repurposed links are then
connected to the open upward facing ports of q2 and r2, leav-
ing the right half of the tree disconnected and ready for dele-
tion, as shown in Figure 2(c). At this point, s is connected
to each L2 pod via two distinct switches and can reach either
pod despite the failure of one such link. We describe this tree
as 1-fault tolerant at L3. In general, we use L i fault tolerance
to refer to L i-to-L i−1 links.
For a tree with a given depth and switch size, there may be

multiple options for the fault tolerance to add at each level,
and fault tolerance can be added to any subset of levels. Ad-
ditionally, decisionsmade at one levelmay a�ect the available
options for other levels. In the following sections, we present
an algorithm that makes a coherent set of these per-level de-
cisions throughout an Aspen tree.

3.1 Preliminary Assumptions
In order to limit our attention to a tractable set of options,

we introduce a few restrictions on the trees that we wish to
generate. First, we consider only trees in which switches at
each level are divided into pods of uniform size. �at is, all
pods at L i must be of equal size, though this size may di�er
from that of the pods at L f ∶ f≠i . Similarly, within a single level,
all switches have equal fault tolerance to neighboring pods in
the level below, but the fault tolerance of switches at L i need
not equal that of switches at L f ∶ f≠i .

3.2 Aspen Tree Generation
Intuitively, we begin at the top level of the tree, Ln , and

group switches into a single pod. We then select a value for
the fault tolerance between Ln and the level below, Ln−1. Next,
we move to Ln−1, divide the Ln−1 switches into pods, and
choose a value for the fault tolerance between Ln−1 and Ln−2.
We repeat this process for each level moving down the tree,
terminating when we reach L1. At each level, we select val-
ues according to a set of constraints that ensure that all of the
per-level choices work together to form a coherent topology.

3.2.1 Variables and Constraints
Before presenting the technical details of our algorithm,

we �rst introduce several helpful variables and the relation-
ships amongst them. Recall that an Aspen tree has n levels

s	   w	  

q1	  q2	   r1	   r2	   t1	   t2	   v1	   v2	  

L1	  

L2	  

L3	  

(a) Freeing Uplinks from L2

s	   w	  

q1	  q2	   r1	   r2	   t1	   t2	   v1	   v2	  

(b) Selecting L2-L3 Links for Repurposing

s	   w	  

q1	  q2	   r1	   r2	   t1	   t2	   v1	   v2	  

(c) Reconnecting Redundant Links

Figure 2: Modifying a 3-Level, 4-Port Fat Tree to Have 1-Fault Tolerance at L3
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of switches, and that all switches have exactly k ports. In or-
der for the uplinks from L i to properly match all downlinks
from L i+1, to allow for full bisection bandwidth, the number
of switches at all levels of the tree except Ln must be the same.
We denote this number of switches per level with S. Each Ln
switch has twice as many downlinks (k) as the uplinks of an
Ln−1 switch ( k2 ) and so for Ln−1 uplinks to match Ln down-
links, there are S

2 Ln switches.
At each level L i , our algorithm �rst groups switches into

pods and then selects a fault tolerance value to connect L i
switches to L i−1 pods below. We represent these choices with
four variables: p i ,m i , r i and c i .�e �rst two variables encode
pod divisions; p i indicates the number of pods at L i , and m i
represents the number of members per L i pod. Combining
these variables with the number of switches at each level, we
have the constraint:

p im i = S , 1 ≤ i < n pnmn =
S
2

(1)

�e variables r i and c i relate to per-level fault tolerance.
r i expresses the responsibility of a switch and is a count of
the number of L i−1 pods to which each L i switch connects.
c i denotes the number of connections from an L i switch s to
each of the L i−1 pods that s neighbors. Since we require (§ 3.1)
that switches’ fault tolerance properties are uniform within a
level, a switch’s downward links are spread evenly among all
L i−1 pods that it neighbors. Combining this with the number
of downlinks at each level, we have:

r i c i =
k
2
, 1 < i < n rncn = k (2)

Each constraint listed thus far relates to only a single level
of the tree, so our �nal equation connects adjacent levels. Ev-
ery pod q below Ln must have a neighboring pod above, oth-
erwise q and its descendants would be disconnected from the
graph. �is means that the set of pods at L i∶i≥2 must “cover”
(or rather, be responsible for) all pods at L i−1:

p ir i = p i−1 , 1 < i ≤ n (3)

An Aspen tree is formally de�ned by a set of per-level val-
ues for p i , m i , r i and c i , such that constraint Equations 1
through 3 hold, as well as by a striping policy for specify-
ing switch interconnection patterns. We defer a discussion
of striping until § 6.

3.2.2 Aspen Tree Generation Algorithm
We now use Equations 1 through 3 to formalize our algo-

rithm, which we present in pseudo code in Listing 1. �e al-
gorithm calculates values for p i , m i , r i , c i and S (lines 1-5),
using a level iterator and a record of the number of downlinks
at each level (lines 6-7).

We begin with the requirement that each Ln switch con-
nects at least once to each Ln−1 pod below. �is e�ectively
groups all Ln switches into a single pod, so pn=1 (line 8). We
defer calculation of mn until the value of S is determined.

We consider each level in turn from the top of the tree
downwards (lines 9, 14). At each level, we choose appropriate

Listing 1: Aspen Tree Generation Algorithm

input : k, n
output: p, m, r, c, S

1 int p[1...n] = 0
2 int m[1...n] = 0
3 int r[2...n] = 0
4 int c[2...n] = 0
5 int S
6 int i = n
7 int downl inks = k
8 p[n] = 1
9 while i ≥ 2 do
10 choose c[i] s.t. c[i] is a factor of downl inks
11 r[i] = downl inks ÷ c[i]
12 p[i − 1] = p[i]r[i]
13 downl inks = k

2
14 i = i − 1

15 S = p[1]
16 m[n] = S ÷ 2
17 for i = 1 to n − 1 do
18 m[i] = S ÷ p[i]
19 if m[i] ∉ Z then report error and exit
20 if m[n] ∉ Z then report error and exit

values for fault tolerance variables c i and r i (lines 10-11) with
respect to constraint Equation 2.2 Based on the value of r i , we
use Equation 3 to determine the number of pods in the level
below (line 12). Finally, we move to the next level, updating
the number of downlinks accordingly (lines 13-14).

�e last iteration of the loop calculates the number of pods
at L1 (line 12). Since each L1 switch is in its own pod, we know
that S=p1 (line 15). We use the value of S with Equation 1 to
calculatem i values (lines 16-18). If at any point, we encounter
a non-integer value form i , we have generated an invalid tree
and we exit (lines 19-20).

Note that instead of making decisions for the values of r i
and c i at each level, we can choose to enumerate all possi-
bilities. Rather than creating a single tree, this generates an
exhaustive listing of all possible Aspen trees given k and n.

3.3 Aspen Trees with Fixed Host Counts
�e algorithm in Listing 1 demonstrates a method for cre-

ating Aspen trees given a �xed switch size (k), number of tree
levels (n), and desired fault tolerance values (c2 ...cn). �e
number of hosts that the topology supports is an output value.
We present the algorithm in this way in order to match the
intuition of Figure 2. It is instead possible to create an As-
pen tree by �xing the host count of a corresponding fat tree
and adding more levels of switches in order to accommodate
higher fault tolerance. With a �xed host count, S remains the
same as that for the corresponding fat tree, so we begin with
the fact that p1 = S and work upwards, selecting c i and r i
2Alternatively, we could accept as an input, desired per-level fault
tolerance values. In this case, we would set each c i value by adding
1 to the desired fault tolerance for L i .
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values according to the desired fault tolerance.3 A concern
with this alternate generation algorithm is that the addition
of more network elements (and their interconnecting links)
introduces more points of failure. We more carefully con-
sider this concern in § 7.2 and show that the ability to react to
failures locally outweighs the increased likelihood of a packet
encountering a failure.

4. ASPEN TREE PROPERTIES
An Aspen tree generated by the algorithm of § 3 is de�ned

by the set of per-level values selected for p i , m i , r i , and c i ;
these values in turn determine the per-level fault tolerance,
the number of switches needed and hosts supported, and the
amount of hierarchical aggregation fromone level to the next.

4.1 Fault Tolerance
�e fault tolerance at each level of an Aspen tree is deter-

mined by the number of connections c i that each switch s
has to pods below. If all but one of the connections between
s and a pod q fail, s can still reach q and can route packets to
q’s descendants. �us the fault tolerance at L i is c i − 1.
To express the fault tolerance of a tree as a whole, we in-

troduce the Fault Tolerance Vector (FTV).�e FTV lists, from
the top of the tree down, individual fault tolerance values for
each level, i.e. <cn − 1,...c2 − 1>.4 For instance, an FTV of
<3,0,1,0> describes a �ve level tree, with four links between
every L5 switch and each neighboring L4 pod, two links be-
tween an L3 switch and each neighboring L2 pod, and only a
single link between an L4 (L2) switch and neighboring L3 (L1)
pods. �e FTV for a traditional fat tree is <0,...,0>.
Figure 3 presents four sample 4-level Aspen trees made up

of 6-port switches, each with di�erent FTVs. Figure 3(a) lists
all possible n=4, k = 6 Aspen trees, omitting trees that have
a non-integer value for m i at any level. At one end of the
spectrum, we have the unmodi�ed fat tree of Figure 3(b). In
this tree, each switch connects via only a single link to each
pod below. On the other hand, in the tree of Figure 3(e), each
switch connects three times to each pod below, giving this
tree an FTV of <2,2,2>. Figures 3(c) and 3(d) show more of a
middle ground, each adding duplicate connections at a single
(di�erent) level of the tree.

4.2 Number of Switches Needed
In order to discuss the number of switches and hosts in

an Aspen tree, it is helpful to begin with a compact way to
express the variable S. Recall that our algorithmbeginswith a
value for pn , chooses a value for rn , and uses this to generate a
value for pn−1, iterating down the tree towards L1.�e driving
factor that moves the algorithm from one level to the next
3In this case, the desired fault tolerance values must be known a
priori in order to determine the number of levels thatmust be added
to the corresponding fat tree.
4One could instead consider a Connection Vector, CV = <cn ,...c2>.
While a CV would �t more easily into our derivations, we chose the
FTV because it expresses the topology’s fault tolerance at a glance.

is Equation 3. “Unrolling” this chain of equations from L1
upwards, we have:

p1 = p2r2
p2 = p3r3 → p1 = (p3r3)r2

...
pn−1 = pnrn → p1 = (pnrn)rn−1 ...r3r2

pn = 1 → p1 = rnrn−1 ...r3r2

∀i ∶ 1 ≤ i < n, p i =
n
∏
j=i+1

r j

We use Equation 2 and the fact that S is equal to the num-
ber of pods at L1 to express S as a function of the tree’s per-
level’s c i values:

S = p1 =
n
∏
j=2

r j = rn ×
n−1
∏
j=2

r j =
k
cn
×

n−1
∏
j=2

k
2c j

= kn−1

2n−2
×

n
∏
j=2

1
c j

To simplify the equation for S, we introduce the Duplicate
Connection Count (DCC), which when applied to an FTV,
adds one to each entry (to convert per-level fault tolerance
values into corresponding c i values) and multiplies the re-
sulting vector’s elements into a single value.5 For instance,
the DCC of an Aspen tree with FTV <1,2,3> is 2 × 3 × 4=24.
We rewrite the equation for S as:

S = kn−1

2n−2
× 1
DCC

(4)

Figure 3(a) shows the DCCs and corresponding values of S
for each Aspen tree listed, with S= 54

DCC .
�is compact representation for Smakes it simple to calcu-

late the total number of switches in a tree. Levels L1 through
Ln−1 each have S switches and Ln has S

2 switches. �is means
that there are (n − 1

2 )S switches altogether in an Aspen tree.
Figure 3(a) gives the number of switches in each example tree,
given that n − 1

2=3.5.

4.3 Number of Hosts Supported
�e most apparent cost of adding fault tolerance to an As-

pen tree is the resulting reduction in the number of hosts sup-
ported. In fact, each time the fault tolerance of a single level
is increased by an additive factor of x with respect to that of a
minimal fat tree, the number of hosts in the tree is decreased
by amultiplicative factor of x. To see this, note that the max-
imum number of hosts supported by the tree is simply the
number of L1 switches multiplied by the number of down-
ward facing ports per L1 switch. �at is,

hosts = k
2
× S = kn

2n−1
× 1
DCC

(5)

As Equation 5 shows, changing an individual level’s value
for c i from the default of 1 to x > 1 results in a multiplicative
reduction by a factor of 1

x to the number of hosts supported.
�is tradeo� is shown for all 4-level, 6-port Aspen trees in
5�eDCC expresses the number of distinct paths from an Ln switch
s to an L1 switch t.
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Fault
S Switches Hosts

Hierarchical
Tolerance Aggregation

FTV DCC L4 L3 L2 Overall
<0,0,0> 1 54 189 162 3 3 3 27
<0,0,2> 3 18 63 54 3 3 1 9
<0,2,0> 3 18 63 54 3 1 3 9
<0,2,2> 9 6 21 18 3 1 1 3
<2,0,0> 3 18 63 54 1 3 3 9
<2,0,2> 9 6 21 18 1 3 1 3
<2,2,0> 9 6 21 18 1 1 3 3
<2,2,2> 27 2 7 6 1 1 1 1

(a) All Possible 4-Level, 6-Port Aspen Trees
(Bold rows correspond to topologies pictured.)

(b) Unmodi�ed 4-Level 6-Port Fat Tree: FTV=< 0,0,0 >

(c) FTV=< 0,2,0 > (d) FTV=< 2,0,0 > (e) FTV=< 2,2,2 >

Figure 3: Examples of 4-Level, 6-Port Aspen Trees

Figure 3(a) and also in the corresponding examples of Fig-
ures 3(b) through 3(e). �e traditional fat tree of Figure 3(b)
has no added fault tolerance and a corresponding DCC of 1.
�erefore it supports the maximal number of hosts, in this
case, 162. On the other hand, the tree in Figure 3(e) has a
fault tolerance of 2 between every pair of levels. Each level
contributes a factor of 3 to the tree’s DCC, reducing the num-
ber of hosts supported by a factor of 27 from that of a tradi-
tional fat tree. Increasing the fault tolerance at any single level
of the tree a�ects the host count in an identical way. For in-
stance, Figures 3(c) and 3(d) have di�ering FTVs, as fault tol-
erance has been added at a di�erent level in each tree. How-
ever, the two trees have identical DCCs and thus support the
same number of hosts.�is is the key insight that leads to our
recommendations for middle ground topologies in § 7.1.

4.4 Hierarchical Aggregation
Another property of interest is hierarchical aggregation,

that is, the number of L i−1 pods that are folded into each L i
pod. While hierarchical aggregation may be less of a con-
cern than the number of hosts supported, it plays a role in de-
termining the e�ciency of certain communication schemes.
For hierarchical topologies, a labeling scheme such as those
in [24, 28] can be used to enable compact forwarding state.
In this type of labeling scheme, descendant switches below a
given L i pod share the same label pre�x, and therefore it is
desirable to group as many L i−1 switches together as possible
under a single L i switch. �e hierarchical aggregation at L i
of an Aspen tree expresses the number of L i−1 pods to which

each L i switch connects, and can be written as m i
m i−1

.
As with host count, there is a tradeo� between fault toler-

ance and hierarchical aggregation. �is is because the num-
ber of downward-facing ports available at each switch (k) does
not change as the fault tolerance of a tree is varied. So if
the c i value for a switch s is increased, the extra links must
come from other downward neighbors of s. �is necessarily
reduces the number of pods to which s connects below.

It is di�cult to provide an equation that directly relates
fault tolerance and hierarchical aggregation to one another at
a single level, because hierarchical aggregation is not a single-
level concept. To increase the hierarchical aggregation at L i
( m i
m i−1

) we must either increase m i or decrease m i−1. How-
ever, this in turn reduces hierarchical aggregation at either
L i+1 or L i−1. Because of this, we consider the hierarchical ag-
gregation across the entire tree. While this does not provide
a complete picture, it does give intuition about the tradeo�
between fault tolerance and hierarchical aggregation. We ex-
press an Aspen tree’s overall hierarchical aggregation as the
product of its per-level hierarchical aggregation values:

mn

mn−1
× mn−1

mn−2
× ... × m3

m2
× m2

m1
= mn

m1
= S
2

�erefore, hierarchical aggregation relates to an Aspen’s
FTV in an identical manner to that of host count; an addi-
tive increase to a level’s c i value results in a multiplicative re-
duction in hierarchical aggregation by the same factor. Fig-
ure 3(b) has the maximal possible hierarchical aggregation at
each level (in this case, 3) while Figure 3(e) has no hierar-
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chical aggregation at all. �e additional fault tolerance at a
single level of each of Figures 3(d) and 3(c) costs these trees a
corresponding factor of 3 in overall aggregation. �e values
related to hierarchical aggregation for all possible n=4, k=6
Aspen trees are given in Figure 3(a).

5. LEVERAGING FAULT TOLERANCE
Recall from the example of § 2 that a minimal fat tree has

no choice but to drop a packet arriving at a switch incident
on a failed link. In fact, in Figure 1, a packet sent from host
x to host y would be doomed to be lost the instant that x’s
ingress switch a selected b as the packet’s next hop. Extra fault
tolerance links push this “dooming” decision farther along
the packet’s path; this reduces the chances that a packet will
be dropped due to a failure that occurs while the packet is
in �ight. Moreover, keeping the set of switches that need to
react close to a failure limits both the convergence time and
overhead of the reaction.

Figure 4 shows an n=4, k=4 Aspen tree, modi�ed from the
4-level, 4-port fat tree of Figure 1 to have an FTV of <0,1,0>,
that is, it has additional fault tolerance links between L3 and
L2. As described in § 4, this comes at the cost of half of the
hosts in the tree. �e additional links between L3 and L2 give
a packet sent from x to y an alternate path through h, as in-
dicated by the darkened arrows. If switch e knows about the
failure of link f -g, it can route packets towards h rather than
f . �us the switch that needs to know about the failure (e)
is relatively far along the packet’s path, whereas in the tradi-
tional fat tree of Figure 1, knowledge of the failure needs to
propagate all the way back to the sender’s ingress switch.

d	  

e	   c	  

g	  

f	   h	  

y	  

a	  

b	  

x	  

L2	  

L3	  

L4	  

L1	  

Figure 4: 4-Level, 4-Port Aspen Tree with FTV=<0,1,0>

5.1 Failure Notification Protocol Overview
A key reason for the slow convergence of broadcast-based

protocols (e.g.OSPF and IS-IS) in the data center is the need
to disseminate topology information to every possible sender
a�er a single link failure. Each switch performs expensive cal-
culations that grow with the size of the topology, and routing
updates propagate through a number of hops proportional
to the depth of the tree. In Aspen trees, added fault tolerance
links limit the set of switches that react to a link failure to the
ancestors of a switch incident on the failure.

We leverage these fault tolerance links in Aspen trees by
considering an insight similar to that of failure-carrying pack-
ets [17]: the tree consists of a relatively stable set of deployed

physical links, and a subset of these links are up and avail-
able at any given time. Our approach is to run global re-
convergence at a slower time-scale than traditional OSPF or
IS-IS deployments, and to use a separate noti�cation proto-
col to react to transient link failures and recoveries. With this
protocol, noti�cations are sent upwards to ancestors located
near a failure, rather than being broadcast throughout the en-
tire tree. More importantly, these noti�cations are simpler to
compute andprocess than the calculations required for global
re-convergence. By decreasing the number of hops through
which updates propagate and the processing time at each hop,
we signi�cantly reduce the tree’s re-convergence time.6

5.2 Propagating Failure Notifications
To determine the set of ancestors that should receive a fail-

ure noti�cation, we consider the e�ect of a link failure along
an in-�ight packet’s intended path. Shortest path routing will
send packets up and back down the tree, so we consider the
upward and the downward path segments in turn.

If a link along the upward segment of a packet’s path fails,
the path simply changes on the �y. �is is because each of a
switch’s uplinks leads to some subset of Ln switches. In § 3,
we introduced the requirement that all Ln switches connect at
least once to all Ln−1 pods, so all Ln switches ultimately reach
all hosts. As such, a packet can travel upward towards any Ln
switch, and a switch at the bottom of a failed link can simply
select an alternate upward-facing output port in response to
the failure. �erefore, no failure noti�cations are necessary
to support re-routing of upward-moving packets.

�e case in which a link fails along the downward segment
of a packet’s intended path is somewhat more complicated.
Consider a failure that occurs between L i and L i−1 along a
packet’s intended downward path. Fault tolerance properties
below L i are not relevant, as the packet needs to be diverted at
or before reaching L i in order to avoid the failure. However, if
there is added fault tolerance at or above L i , nearby switches
can route around the failure, according to the following cases:
1. c i>1:�e failed link is at a level with added fault tolerance.
2. c i=1, c i+1>1:�e closest added fault tolerance is at the level

immediately above the failure.
3. c i=1, c f >1, for some f >i+1: �e nearest level with addi-

tional links is more than one hop above.
Case 1: �is case corresponds to the failure of link e− f in
Figure 4. When the packet reaches switch e, e realizes that the
intended link e− f is unavailable and instead uses its second
connection to f ′s pod, through h. By de�nition of a pod,
h has downward reachability to the same set of descendants
as f and therefore can reach g and ultimately, the packet’s
intended destination, y. Since e is incident on the failed link,
it does not need to propagate any noti�cations.
Case 2: Case (2) corresponds to the failure of link f−g in Fig-
ure 4. In this case, if the packet travels all the way to f it will
6Note that even with localized failure reaction there will still be
background control tra�c for normalOSPF behavior, but this tra�c
will not be on the critical path to re-convergence.
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be dropped. But if switch e learns of the failure of f−g be-
fore the packet’s arrival, it chooses the alternate path through
f ’s pod member h. To allow for this, when f notices the fail-
ure of link f−g, it should notify any parent (e.g. e) that has a
second connection to f ’s pod (e.g. via h).
Case 3: Finally, Figure 5 shows an example of case (3), in
which L2 link f−g fails and the closest added fault tolerance
is at L4. Here, the nearest ancestor of f that can route around
the failure is d. Upon a packet’s arrival, d can select i as the
next hop, so that the packet travels along the path d−i−h−g−y.
While the fault tolerance is located further from the failure
than in case (2), the goal is the same: f noti�es any ancestor
(e.g. d) with a downward path to another member of f ’s pod.

d	  

e	   i	   c	  

g	   a	  

f	   h	   b	  

y	   x	  

L2	  

L3	  

L4	  

L1	  

Figure 5: 4-Level, 4-Port Aspen Tree with FTV=<1,0,0>

To generalize, when a link from L i switch s to L i−1 neigh-
bor t fails, s �rst determines whether it has non-zero fault
tolerance. If so, it subsequently routes all packets intended
for t to an alternate member of t’s pod. Otherwise, s passes
a failure noti�cation (indicating the hosts that it no longer
reaches) upwards. If an ancestor that receives this noti�ca-
tion has alternate paths to these hosts, via an alternate mem-
ber of s’s pod, it adjusts its local state accordingly. Otherwise
it forwards the noti�cation upwards. As we show in § 8, these
noti�cations introduce little complexity.

6. WIRING THE TREE: STRIPING
In § 3, we described the generation of Aspen trees in terms

of switch count and placement, and the number of connec-
tions between switches at adjacent levels. Here, we consider
the organization of connections between switches, a process
we refer to as striping. We have deferred this discussion un-
til now because of the topic’s dependence on the techniques
described in § 5 for routing around failures.

Striping refers to the distribution of connections between
an L i pod and neighboring L i−1 pods. For instance, consider
the striping pattern between L3 and L2 in the 3-level tree of
Figure 6(a). �e le�most (rightmost) switch in each L2 pod
connects to the le�most (rightmost) two L3 switches. On the
other hand, Figure 6(b) shows a di�erent connection pattern
for the switches in the rightmost two L2 pods, as indicated
with the darkened lines.

Striping can a�ect connectivity, over-subscription ratios,
and the e�ectiveness of redundant links in Aspen trees. Some
striping schemes even disconnect switches at one level from

L2	  

L3	  

L1	  

(a) Standard Fat Tree Striping (b) Alternate Striping Option

(c) Disconnected Striping (d) Striping with Parallel Links

Figure 6: Striping Examples for a 3-Level, 4-Port Tree
(Hosts have been omitted for space and clarity.)

pods below. In fact, we made a striping assumption in § 3 to
avoid exactly this scenario, by introducing the constraint that
each Ln switch connects to each Ln−1 pod at least once. �e
striping scheme of Figure 6(c) violates this constraint, as the
two shaded L3 switches do not connect to all L2 pods. Some
striping patterns include parallel links, as in Figure 6(d). Each
L3 switch connects twice to one of its neighboring L2 pods,
via parallel connections to a single pod member.

Introducing additional fault tolerance into an Aspen tree
increases the number of links between switches and pods at
adjacent levels, thus increasing the set of possibilities for dis-
tributing these connections. Since the techniques of § 5 rely
on the existence of ancestors common to a switch s incident
on a failed link and alternate members of s’s pod, a reason-
able striping policy must yield such common ancestors. �is
means, for instance, that striping patterns should not consist
entirely of duplicate, parallel links; In the example of Figure 4,
had switch e simply had duplicate parallel connections to f ,
it would not be able to route around the failure of link f − g.
In general, the following striping policy is necessary to en-
able re-routing: For every level L i with minimal connectivity
to L i−1, if L f ∶ f>i is the closest fault tolerant level above L i , each
L i switch s shares at least one L f ancestor a with anothermem-
ber of s’s pod, t.

7. DISCUSSION
In this section, we consider instances of Aspen trees that

provide a signi�cant reduction in convergence time at amod-
erate scalability cost (e.g. 80% faster convergence with 50%
host loss). We alsomore closely examine the tradeo�between
decreased convergence time and newly introduced points of
failure when generating Aspen trees with �xed host counts.

7.1 Practical Aspen Trees
We showed in § 5 that the most useful and e�cient fault

tolerance is (1) above failures and (2) as close to failures as
possible. We formalize this in terms of the FTV. �e most
fault-tolerant tree has an FTV with all maximal (and non-
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zero) entries. However, such an FTV may come at too high
of a scalability cost. To enable usable and e�cient fault toler-
ance, in FTVs with non maximal entries it is best to cluster
non-zero values to the le� while simultaneously minimizing
the lengths of series of contiguous zeros. For instance, if we
can put only two non-zero entries in an FTV of length 6, the
ideal placement would be <1,0,0,1,0,0>. �ere are at most
two contiguous zeros, so updates propagate a maximum of
two hops, and each 0 has a corresponding 1 to its le�, so no
failure leads to global propagation of routing information.

One Aspen tree in particular bears special mention. Given
our goal of keeping fault tolerance at upper tree levels (and
towards the le� of an FTV), the largest value-add with mini-
mal scalability cost is the addition of extra links at the single
level of the tree that can accommodate all failures, i.e. the
top level. A tree with only Ln fault tolerance has an FTV
of <1,0,0,...> and a DCC of 2, and therefore supports half as
many hosts as does a traditional fat tree. �e average conver-
gence propagation distance for this tree is less than half of that
for a traditional fat tree, and more importantly, all updates
only travel upward rather than fanning out to all switches in
the tree. For instance, for an Aspen tree with n=4, k=16 and
FTV=<1,0,0,...>, host count is reduced by only 50% while
convergence time is reduced by 80% from that of the corre-
sponding fat tree. In fact, the topology used for VL2 [11] is an
instance of an Aspen tree with an FTV of <1,0,0,...>.

7.2 Aspen Trees with Fixed Host Counts
�us far we have approached the design of Aspen trees

from the viewpoint of �rst selecting the network size and de-
sired fault tolerance, and then determining the amount of
host support as compared to that of a traditionally-de�ned fat
tree.�e algorithmof Listing 1 accepts as inputs the values for
k (switch size) and n (tree depth) and the desired fault toler-
ance, and these values in turn determine the number of hosts
supported (Equation 5). If we instead �x both the number of
hosts supported and the desired fault tolerance, network size
becomes the dependent variable.

A concern with creating Aspen trees in this manner relates
to the fact that an Aspen tree with non-zero fault tolerance
needs more levels of switches to support the same number of
hosts than does a traditionally-de�ned fat tree with identi-
cally sized switches. �is raises the question of whether the
decreased convergence time in an Aspen tree outweighs the
increased probability of failure resulting from the addition
of switches and links. To evaluate this, we �rst calculate the
number of links added if we �x the number of hosts while
turning a given fat tree into anAspen tree with non-zero fault
tolerance. We then compute the average convergence times
across all links for both trees. Finally, we multiply the num-
ber of links in each tree by its average per-link convergence
time and compare the two results.

We present this comparison for Aspen trees with FTVs of
<1,0,0,...> (as suggested in § 7.1); we omit a full derivation
across all Aspen tree types for brevity. For a �xed switch size,

the ratio of failure convergence cost of a fat tree of depth n to
that of an Aspen tree with the same host count is:

(n − 1
2
)(3n − 4) ∶ (n + 1

2
)(n − 1) (6)

Figure 7 depicts this ratio varied across the tree depths thatwe
expect to see in practice. �is con�rms that the overall con-
vergence cost in a fat tree is always larger than that in an As-
pen tree with the same host count and an FTV of <1,0,0,...>,
and this bene�t increases with the depth of the tree.
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Figure 7: Fat Tree versus Aspen Tree Convergence Costs

�erefore, while a packet encounters more links in its path
through an Aspen tree than it would in the corresponding fat
tree with the same host count, the probability that the packet
can be re-routed around a failure rather than dropped more
thanmakes up for this introduction of more points of failure.

It is important to note that by addingmore levels of switches
and links to anAspen tree, we increase the path length for the
common case packet that does not encounter a failure. Be-
cause this occurs in the data plane, this amounts to a latency
increase on the order of nano ormicroseconds. However, this
may not be acceptable in all scenarios. As such, it is crucial
that a data center operator use only the minimal added fault
tolerance that is absolutely necessary for correct operation
when building an Aspen tree with �xed host count.

8. EVALUATION
We now explore more closely the tradeo�s between con-

vergence time, scalability, and network size in Aspen trees.
We �rst consider the convergence time and scalability across
Aspen trees with given network sizes, from the perspective of
the discussion and algorithm in § 3.2.�at is, we consider the
scalability cost of adding redundant links to a traditionally-
de�ned fat tree of �xed depth. Next, we consider Aspen tree
tradeo�s from the point of view introduced in § 3.3. For a
�xed host count, we show the increase in network size neces-
sary to decrease re-convergence time by varying amounts.

8.1 Convergence versus Scalability
AnAspen tree with added fault tolerance, and therefore an

FTV with non-zero entries, has the ability to react to failures
locally. �is eliminates the need for global re-convergence
of broadcast-based routing protocols on failure, and instead
relies on a simple failure noti�cation protocol. �ese failure
noti�cations require less processing time, travel shorter dis-
tances, and are sent to fewer switches, signi�cantly reducing
convergence time and control overhead.
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If the fault tolerance at L f is non-zero, then switches at L f
can route around failures that occur at or below L f , provided
a switch incident on an L i failure noti�es its L f ancestors to
use alternate routes. So, the convergence time for a fault be-
tween L i and L i−1 is simply the set of network delays and
processing times for each switch along an ( f−i)-hop path.
Adding redundant links at the closest possible level L f above
expected failures at L i minimizes this convergence time.
�e cost of adding fault tolerance to a �xed-depth fat tree

is in the tree’s overall scalability, in terms of both host support
and hierarchical aggregation. Each FTV entry x > 0 reduces
the maximum possible number of hosts as well as the tree’s
hierarchical aggregation; this reduction is by a factor of x + 1.
We begin with a small example with n=4 and k=6 in order

to explain the evaluation process. For each possible 4-level,
6-port Aspen tree, we consider the FTVand correspondingly,
the distance that updates travel in response to a failure at each
level. For instance if there is non-zero fault tolerance between
L i and L i−1, then the update propagation distance for failures
at L i is 0 and the distance for failures at L i−2 is 2. If there is no
area of non-zero fault tolerance above a level, we are forced to
revert to global re-convergence. We average this propagation
distance across failures at all levels of the tree7 to give ametric
for expressing average convergence time for a tree.

Alongside convergence time, we consider the scalability
cost of adding fault tolerance by counting the number of hosts
missing in each Aspen tree as compared to a traditional fat
tree with the same depth and switch size. We elect to consider
hosts removed, rather than hosts remaining, so that the com-
pared measurements (convergence time and hosts removed)
are bothminimal in the ideal case and can bemore intuitively
depicted graphically. Figure 8 shows this convergence versus
scalability tradeo�; for each possible FTV option, the �gure
displays the average convergence time (in hop count) across
all levels, alongside the number of hosts missing with respect
to a traditional fat tree.8 To normalize, values are shown as
percentages of the worst case. �e graphs for hierarchical ag-
gregation show identical trends; we omit them for brevity.

�us, we have a spectrum of Aspen trees. At one end of
this spectrum is the tree with no added fault tolerance links
(FTV=<0,0,0>) but with no hosts removed. At the other end
are trees with high fault tolerance (all failure reactions are lo-
cal) but with over 95% of the hosts removed. In the middle
we �nd interesting cases: in these, not every failure can be
handled locally, but those not handled locally can be masked
within a small and limited number of hops. �e convergence
times for thesemiddle-ground trees are signi�cantly less than
that of a traditional fat tree, but substantially fewer hosts are
removed than for the tree with entirely local failure reactions.

We observe that there are o�en several ways to generate
trees with the same host count but with di�ering convergence
times. �is is shown in the second, third and fourth entries

7We exclude 1st hop failures as neither technique mitigates these.
8Because we average convergence times across tree levels, no indi-
vidual entry in the graph reaches 100% of the maximum hop count.
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Figure 8: Convergence vs. Scalability: n=4, k=6 Aspen Trees

of Figure 8, in which the host counts are all 1
3 of that for a tra-

ditional fat tree, but the average update propagation distance
varies from 1 to 2.3 hops. A network designer constrained by
the number of hosts to support should select a tree that yields
the smallest convergence time for the required host support.
Similarly, there are cases in which the convergence times are
identical but the host count varies, e.g. FTVs <2,0,0> and
<0,2,2>. Both have average update propagation distances of
1, but the former supports 54 hosts and the latter only 18.

We now examine more realistically sized Aspen trees. In
practice, we expect treeswith 3≤n≤7 levels and 16≤k≤128 ports
per switch, in support of tens of thousands of hosts. Fig-
ures 9(a) and 9(b) show graphs similar to that of Figure 8,
for 16-port trees of depths 4 and 5, respectively. Because of
the large number of con�guration options for these values of
n and k, we o�en �nd that numerous FTVs all correspond
to a single (host count, convergence time) pair. We collapsed
all such duplicates into single entries, and because of this, we
removed the FTV labels from the resulting graphs.

Figures 9(a) and 9(b) show the same trend as does Figure 8,
but since there are more options for generating trees, the re-
sults are perhaps more apparent. As we move from le� to
right in the bar graphs, we remove more hosts. However, the
host removal bars in the graph are grouped into steps; each
individual number of hosts removed corresponds to several
di�erent values for average convergence time. We mark one
such step in Figure 9(b) with arrows. In this case, if we are
constrained by the number of hosts to support, we would se-
lect the rightmost entry in the corresponding step, i.e. that
with the smallest convergence time.

Figure 10 shows trees with larger switches (k=32 and 64)
but with smaller values for the depth of the tree (n=3) so
as to keep our results in line with the topology sizes we ex-
pect to see in practice. For these graphs, we again collapsed
duplicates and thus omitted FTV labels, but since the small
number of levels limits the number of possible trees, there
are fewer entries than in the graphs of Figure 9. �ese results
again show that with only modest reductions to host count,
the reaction time of a tree can be signi�cantly improved.

8.2 Convergence versus Network Size
We next consider the scenario in which a data center oper-

ator wishes to add fault tolerance to an existing topology by
increasing the network size (i.e. by adding switches and links)
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Figure 9: Convergence versus. Scalability Tradeo� for 4- and 5-Level, 16-Port Aspen Trees
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Figure 10: Convergence vs. Scalability Tradeo� for 3-Level, 32- and 64-Port Aspen trees

while keeping host count constant. We examine the various
Aspen tree options for a given host count, measuring for each
tree the number of additional switches needed, the number
of switches involved in a failure reaction, and the tree’s re-
convergence time. �ese values correspond to the added �-
nancial cost, reduced control overhead, and decreased con-
vergence time, respectively, of the expanded network.

8.2.1 Implementation and Simulation
We implemented our failure noti�cation protocol inMace,

a language for distributed systems development. We selected
Mace because of the language’s accompanyingmodel checker
and simulator that allowus to test our failure noti�cation pro-
tocol over a variety of di�erent Aspen trees and sets of ran-
dom failures. We used safety and liveness properties in the
Mace model checker to verify the correctness of our protocol
and we used the Mace simulator to compare the failure reac-
tion time and overhead of our protocol to those of a reference
implementation of a link-state protocol based on OSPF.

We built a topology generator that takes as inputs the tree
depth (n), switch size (k), and FTV, and creates an n-level As-
pen tree of k-port switches matching the input FTV.We used
this generator to create input topologies for the Mace model
checker as follows: for varying values of k and n, we created
an n-level, k- port fat tree and a corresponding (n+1)-level,
k-port Aspen tree with FTV <x ,0,0,...>, where x is a value
that leads to identical host counts in both trees. We highlight
this particular FTV for the reasons introduced in § 7.1.

For each pair of trees, we initially ran our link-state proto-
col to set up routes for the base deployed topology and veri-
�ed the accuracy of these routes using themodel checker. We

then failed each link in each tree several times and allowed
the corresponding recovery protocol to react and restore the
switches’ forwarding tables. For fat trees, we used standard
link-state advertisements (LSAs) and forAspen trees, we used
the protocol described in § 5. We recorded the minimum,
maximum, and average re-convergence time across all fail-
ures for each tree, as well as the minimum, maximum and
average number of switches involved in each failure and the
number of switches needed to build each tree.

Figure 11(a) shows the total number of switches in each fat
tree and corresponding Aspen tree, along with the average
number of switches involved in each failure reaction.9 �e x-
axis gives the number of hosts in the tree, the switch size (k),
and the depth (n) of the fat tree and Aspen tree, respectively.
To change an n-level, k-port fat tree into an Aspen tree with
FTV <x ,0,0,...>, we increase the number of switches at Ln
from S

2 to S and add a new level, Ln+1, with S
2 switches. In

other words, we add S new switches to the tree. �is is a �xed
percentage of the total switches in the tree for any given n,
and corresponds to increases of 40%, 29% and 22%, for 3, 4
and 5-level fat trees, respectively.

Figure 11(a) expresses the cost of the Aspen tree network
in terms of increased switch count as well as the bene�t in
terms of the reduced number of switches that react to each
failure. In general, the link-state protocol involves most of
its switches on each failure reaction. In fact, we would ex-
pect that all switches always process all LSAs, but our mea-
surements are conservative and do not attribute an LSA to a
switch unless the switch’s forwarding table must be recalcu-
9We veri�ed that the minimums and maximums matched the
ranges calculated in § 8.2.2, and graph only the averages for clarity.
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Figure 11: Network Size, Convergence Time, and Control Overhead for Pairs of Corresponding Fat and Aspen Trees

lated as a result of receiving the LSA. On the other hand, less
than 15% of the total switches in an Aspen tree are involved
in processing each failure.

Finally, as Figure 11(b) shows, the convergence time for
each fat tree is substantially longer than that for the corre-
sponding Aspen tree and this di�erence grows with increas-
ing values of n. Our measurement is somewhat conservative,
as it displays convergence time in numbers of hops. For a tra-
ditional OSPF deployment, the compute time at each switch
would be in the hundreds of milliseconds, whereas the time
to process the corresponding Aspen noti�cations would be
one or even two orders of magnitude less. �us, the di�er-
ence between the two plots would be even more pronounced
in reality.

8.2.2 Large Tree Analysis
Since themodel checker operates on instanceswith atmost

a few hundred nodes, we use a separate analysis for networks
comparable in size to today’s mega data centers. Figure 11(c)
is similar to Figure 11(a), but shows a wider range of topolo-
gies. �e two graphs di�er in that in Figure 11(c), we plot
switch-to-host ratios in order to normalize our results across
a wide range of trees. As in our simulations, link-state re-
convergence involves all switches in the tree, whereas only
10 − 20% of the switches in an Aspen tree react to a failure.

Figure 11(d) compares the average convergence times for
each pair of trees, con�rming the drastic reduction in con-
vergence time that Aspen trees can provide. �ese results are
again a conservative estimate, as they donot take into account
the signi�cant di�erence in computation time for processing

an Aspen noti�cation versus an LSA. Our analytical results
align well with our simulations (§ 8.2.1), giving us con�dence
in the accuracy of our measurements.

9. RELATED WORK
Our work is largely motivated by direct experience with

large data center operations as well as by the �ndings of [9],
which shows that link failures are common, isolated, and im-
pactful. �e network redundancy inherent to multi-rooted
tree topologies helps by only a factor of 40%, in part due to
protocols not taking full advantage of redundant links (e.g.
requiring global OSPF re-convergence prior to switching to
backup paths). With the design of Aspen trees and our corre-
sponding failure noti�cation protocol, we better leverage net-
work redundancy for quick failure reaction. �e study in [9]
also �nd that links in the core of the network have the highest
probability of failure and bene�t most from network redun-
dancy. �is aligns well with our recommended Aspen trees
of § 7.1. Finally the study shows that link failures are spo-
radic and short-lived, supporting our belief that such failures
should not cause global OSPF re-convergence.

9.1 Alternative Routing Techniques
Modifying topologies to provide inherent fault tolerance

in the form of redundant links has a signi�cant cost in terms
of a topology’s scalability or network size. Alternative routing
techniques provide another means of addressing fault toler-
ance in a network. We discussed bounce routing and data-
driven connectivity [21] in § 2; here we consider more closely
DDC and other alternative routing techniques.
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DDC and Aspen trees come from the similar motivation
that it is unacceptable to disrupt communication for tens
of seconds while waiting for control plane re-convergence.
DDC approaches the problem by bouncing a packet that en-
counters a failure back along its path until it reaches a node
with an alternate possible path to the destination, repeating
as necessary. �is essentially performs a depth-�rst search
(DFS) rooted at the sender, in which the leaf of the �rst
searched path is the failure that causes the packet to bounce
backwards. �is can lead to long paths but has the bene�t
of working with arbitrary graphs. Unfortunately, DFS-style
routing performs particularly poorly over fat trees, as the de-
cisions that a�ect whether a packet will ultimately reach its
destination are made as early as the �rst hop along a packet’s
path. �e authors of [21] hint at this in their evaluation of
DDC’s e�ectiveness over various topologies. �ey note that
fat trees lack “resilient nodes” that provide multiple output
ports to a destination. In fact, fat trees contain such resilient
nodes only on the upward segment of a packet’s path, whereas
Aspen trees contain resilient nodes on the downward seg-
ment as well. Additionally, in order to keep forwarding state
manageable, DDC supports only exact-match forwarding, as
opposed to the longest-pre�x-matching (LPM) style of for-
warding o�en required in the data center. With Aspen trees,
we leverage the regularity of the underlying topology to pro-
vide fast failure reaction far along a packet’s path, without in-
troducing long paths or sacri�cing LPM-style forwarding.

Failure carrying packets (FCP) [17] eliminate the conver-
gence process a�er a failure by having data packets carry fail-
ure information. FCPs leverage the fact that an intradomain
ISP network has a set of relatively stable links, in terms of
existence, if not availability. �erefore, if all routers know
the full physical network topology, they simply need to learn
the set of links that are unavailable for a given packet. FCP
provides guaranteed eventual delivery of packets if the graph
does not become disconnected. However, the implementa-
tion and deployment cost of introducing a new data plane
may hinder the adoption of FCP in the data center, and the
paths ultimately taken by packets can be long. �is (tem-
porary) introduction of long paths is a di�culty inherent to
many alternative routing techniques; the fact that Aspen trees
have �xed path lengths renders this a non-issue.

Multi-path TCP (MPTCP) [25] breaks individual �ows
into sub�ows, each of which may be sent via a di�erent path
based on current congestion conditions in the network. A
path that includes a failed link will appear to be congested
since a portion of it o�ers no bandwidth, and MPTCP will
move any corresponding sub�ows to another path. A down-
side of MPTCP is its reliance on host modi�cations.

�e idea behind this work is derived from fast failure re-
covery [16] techniques inWANs. Our approach is to engineer
data center topologies so as to enable FFR for link failures.

An interesting idea for future work would be to design a
hybrid approach that combines limited topology modi�ca-
tions with redundancy-aware alternative routing techniques.

9.2 Backup Paths
Another way to improve the fault tolerance of a network

is to establish backup paths for use when a primary path (or
link along the path) for a �ow fails. Many works consider this
topic in the context of either ad hoc networks or resource al-
location for performance guarantees. Generally, such works
fall into two camps. Some advocate assigning backup paths
on �ow entry [12, 13, 15, 26, 30], so that a �ow continues to
function a�er the failure of its primary path and even N−1 of
itsN backup paths.�is comes at the cost of potentially wast-
ing resources that are reserved for backup paths but are rarely
or never used, as well as the time cost of calculating backup
paths prior to �ow admission. Also, for �ows with strict per-
formance requirements, it is di�cult to pre-compute backup
paths in the face of dynamic tra�c.

Other approaches [2, 3, 29] establish a backup path on the
�y at the time of a failure. �e downsides of this technique
are: the possibility of contention for new paths among sev-
eral simultaneously a�ected �ows, the time to calculate new
paths upon failure, and the fact that recovery is not guaran-
teed for any given �ow. However, this approach avoids the
drawback of potentially wasting valuable bandwidth as well
as the time cost of setting backup paths on �ow entry. A lim-
itation of techniques based on backup paths in general is that
it may take a sender a full round-trip delay to determine that
a primary path has failed.

�e authors of [2] and [3] study dynamic backup path cal-
culation along severalmetrics, varying the portion of the path
recalculated, the timing of recalculation, and the possibility
of retrying recalculation. �eir �ndings show that when one
physical link failure a�ects multiple �ows, local reaction is
faster. �is supports our belief that it is ideal to keep the fail-
ure reaction as close as possible to the failure itself.

�e authors of [29] present a hybrid method, calculat-
ing backup paths prior to failure, but admitting �ows once
a primary path has been found without waiting for backup
path calculation to complete. Backup paths are not complete
paths, but rather patches that avoid failed links along portions
of a path. While this approach di�ers from ours in its use of
source routing, it is similar in its use of local failure reaction.

9.3 High Performance Computing Topologies
Our topologies derive from the initial presentations of fat

trees as non-blocking architectures for communication in su-
percomputers [6, 19].�e traditionally de�ned fat tree of Fig-
ure 1 comes fromDeHon’s Butter�y Fat-Tree [8]. A number of
works have extended traditional fat tree topologies by essen-
tially raising c i from 1 to 2 uniformly at all levels of the tree.
Upfal’s multi-butter�y networks [27], Leighton et al’s corre-
sponding routing algorithms [18], andGoldberg et al’s splitter
networks [10] all give examples of these subsets of our trees.
�ese works consider topologies in the context a priori mes-
sage scheduling rather than that of running packet-switched
protocols (e.g. IP) over modern switch hardware in today’s
data centers.
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10. CONCLUSION
Wehave considered the issue of improving failure recovery

in the data center by modifying fat tree topologies to enable
local failure reactions. A single link failure in a fat tree can
disconnect a portion of the network’s hosts for a substantial
period of timewhile updated routing information propagates
to every switch in the tree. �is is unacceptable in the data
center, where the highest levels of availability are required. To
this end, we introduce the Aspen tree — a multi-rooted tree
topology with the ability to react to failures locally — and its
corresponding failure noti�cation protocol. Aspen trees pro-
vide decreased convergence times to improve a data center’s
availability, at the expense of scalability (e.g. reduced host
count) or �nancial cost (e.g. increased network size). Wepro-
vide a taxonomy for discussing the range of Aspen trees avail-
able given a set of input constraints and perform a thorough
exploration of the tradeo�s between fault tolerance, scalabil-
ity, and network cost in these trees.
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